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The structure of cylindrical aqueous micellar solutions was studied by small angle neutron scattering and
light scattering in equilibrium and under shear. In equilibrium, the micelles behave as randomly oriented, rigid
cylinders with an exponential distribution of lengths. Under an applied shear, the micelles generally align as
expected, but at a particular concentration, close to the overlap concentration, applied shear has little effect
until a threshold shear rate is reached and then only after a time delay. The results are consistent with some
aspects of recent kinetic theories for the association and breaking of micelle systems under shear flow.
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The structure of self-assembling systems and the various
phases they exhibit have been the subject of much interest
over the last several years@1#. In particular, surfactant mol-
ecules in aqueous solution display a rich variety of phenom-
ena as they self-assemble to form micelles. The size, shape,
and ordering of the micelles depend sensitively on param-
eters such as the surfactant concentration, the ionic concen-
tration, and the temperature. Of particular interest are the
tubular-cylindrical micelles, sometimes called ‘‘living poly-
mers’’ @2#; their diameter is nearly constant but the length
may vary, and the cylinders break and reform continuously.
Solutions of these micelles are thus stable when subjected to
high mechanical shears and their equilibrium properties re-
cover when shear is removed. In this paper, we report small
angle neutron scattering~SANS! and light scattering~LS!
studies of these solutions, both in equilibrium and under
shear. At a particular concentration~micellar volume fraction
F50.1%!, we find an unusual threshold. Above the thresh-
old the rod length increases with increasing shear and the
rods become aligned. This finding is in contrast to those
found at other concentrations, for which alignment is seen on
immediate application of the shear.

The micellar solutions were prepared by mixing the sur-
factant, allylhexadecyldimethyl ammonium bromide, with an
equal molar amount of sodium salicylate in D2O @3#. The
critical micellar concentration was determined by surface
tension measurement to be approximately 0.002%, and vis-
cosity data suggest an overlap concentrationF* near 0.15%.
Neutron scattering data were taken at micellar concentrations
F50.02%, 0.1%, and 1.0%. The measurements were per-
formed at the NG7-30m diffractometer at the NIST Cold
Neutron Research Facility configured at a wavelengthl50.5
nm and collected in a two-dimensional~2D! area detector.
The magnitude of the scattering wave vectorQ was within a
range of 0.03 nm21 to 1.5 nm21 @Q5(4p/l)sinQ, where
2Q is the scattering angle#. For the equilibrium runs, the
solutions were placed in quartz cells with a path length of 5
mm between the two flat surfaces. For the shear studies, the

samples were placed in a Couette shearing cell@4# with a 1
mm gap width. In Cartesian coordinates, the intensity is mea-
sured as a function ofQ in the xz plane, with the neutron
beam incident along they axis. Under shear, the flow veloc-
ity ~u! is in thex direction, the gradient is in they direction,
and hence the shear rate is defined asg5(]ux/]y!. All data
were collected as 2D images and then circularly averaged or
sector-averaged depending on whether anisotropy was ob-
served in the patterns. Static light scattering data were taken
on the nonsheared 0.1% solutions, using a laser of wave-
length 514 nm and a photomultiplier mounted on a goniom-
eter with the sample in a round quartz cell. All measurements
were carried out at room temperture.

Figure 1 displays data obtained by both SANS and LS
from the equilibrium 0.1% solution. There are three regimes:
a small-Q regime (Q<0.01 nm21, probed entirely with LS!
where the flattening inS(Q) arises because of the finite
length of the micelles; an intermediateQ regime ~0.01
nm21<Q<0.6 nm21! where S(Q) varies asQ21, corre-
sponding to randomly oriented stiff rods@5#; and a rolloff to
the Porod regime due to their finite radius (Q>0.6 nm21!.
The intensityS(Q) was fitted with a model of randomly
oriented cylinders@5# where
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FIG. 1. SANS~squares! and LS~circles! data for the 0.1% so-
lution at equilibrium. The solid line is a fit of randomly oriented
cylinders with an average half length of 115 nm and an average
radius of 1.7 nm. In this logarithmic plot, the intermediate region
has a slope of;21, characteristic of randomly oriented long rods.
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The factorA is a product of an instrumental constant, the
concentration of surfactants, the micellar aggregation num-
ber, and the square of the scattering length density contrast
between the micelle and the solvent. The form factor for a
rod of radiusa and half lengthl , and oriented in a direction
which is an angleb from the vectorQ is

F~Q,b!5
sin~Ql cosb!

Ql cosb

J1~Qa sinb!

Qa sinb
~2!

where J1(x) is the first order Bessel function of the first
kind. The termp(b) is the rod orientation probability which,
in the equilibrium case, is independent ofb. The bracketŝ &
in Eq. ~1! denote an average over bothl and a. For the
length, we use the well-known exponential form for living
micelles@6# given by

N~ l !5H 0, l, l 0

N0exp~2 l /L !, l> l 0
~3!

whereN( l ) is the number density of micelles of half-length
l , and l 0 is a low-l cutoff ~minimum length! value,N0 is a
constant, andL is the average half-length. The data were
fitted using Eqs.~1!–~3!, treatingL, l 0 , N0 , anda as vari-
ables~the radiusa was averaged over a Shultz distribution
with a standard deviation of 25%!. Figure 1 shows that such
a model provides a good representation of the data over three
decades ofQ. The fits yieldedL5115 nm andl 05a51.7
nm.

Only SANS measurements were performed for the 0.02%
and 1.0% solutions. These intensities all scale with that of
the 0.1% sample, suggesting that the micelles’ stiffness
(Q21 behavior! and their radii are independent of the con-
centration. Even though theQ range of SANS is not small
enough to probe 1/l , we can still obtainL for the other two
samples based on the amplitude of their scattering intensity.
This amplitude scales asFLa2. Sincea is nearly a constant,
knowingL for theF50.1% sample, andF for the other two
samples, we obtain the lengthL585.6 nm for the 0.02%
solution and 117 nm for the 1.0% solution~some evidence of
intermicellar interactions was apparent atQ,0.01 nm21 for
the 1.0% sample, therefore we determine the amplitude using
only the data ofQ.0.1 nm21!.

The data taken under shear were analyzed in the context
of the formalism of Hayter and Penfold@7#. These authors
define the probabilityp(b)[p(u,f;P) in terms of the Pe´-
clet number,P5g/Dr . The Pe´clet number is the ratio of two
competing rates: the shear rateg, which is the rate of the
alignment of the rod in the flow direction, and a randomizing
rate assumed to be the rotational diffusion coefficient,Dr .
The probability is given by

p~u,f;P!5
~12cos2f0!~11sin2u cos2f0!

3/2

4p@12sin2u cosf0cos2~f2f0!#
2 ~4!

where Hayter and Penfold define 2f05tan21(8/P) through
which the probability depends onP. The scattering intensity
is then

S~Q!5^S~Q! l ,a&5^S~Q,w! l ,a&

5AE
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dfE
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sinu du^p~u,f;P!F2~Q,b!&. ~5!

In Eq. ~5! w is the angle between the wave vectorQ and the
horizontal axis~x axis! of the area detector, and the relation-
ship betweenb and the polar coordinates andw is

cosb65sinu cosf cosw6cosu sinw. ~6!

@The two signs occur because the beam traverses the sample
twice in the shear cell, with the flow direction reversed in the
two regions. Thus F2(Q,b) is equivalent to
F2(Q,b1)1F2(Q,b2).# In this formalism, the interactions
between rods, such as collisions and other effects, are not
taken into account. Nevertheless, the formalism can provide
a good representation of our data ifDr is defined to be

Dr5
3kBT

8pah l 3
$ ln~2l /a!21.5717@0.2821/ln~2l /a!#2%

~7!

which differs from the original Hayter-Penfold expression
@7,8# by a factora. This factor modifies the solvent viscosity
h to an ‘‘effective viscosity’’ ah to include the effects of
interactions. Alternatively, this modification can also be seen
as to changeP to aP, while keeping the original definitions
of Dr andh intact, as discussed later.

Intensities from the nonequilibrium runs were fitted using
Eqs. ~2!–~7!, wherea is the additional variable. The fitting
procedure was carried out as before. For computational rea-

FIG. 2. Two-dimensional scattering patterns of the SANS data of the 0.1% solution evolving as the shear rate increases~from left to right,
the shear rates areg530, 40, 65 and 80 s21!. The shear flow is on the horizontal direction~w50!. Aboveg580 s21, the pattern changed very
little. TheQ range of the patterns is from 0.15 nm21 ~near the beam stop! to 1.2 nm21 ~at the corners!.
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sons, however, we ignored polydispersity in the radiusa. We
have further assumed implicitly that the length distribution
of the micelle rods isindependentof their orientations,
which greatly simplifies the analysis.

Results for the 0.02% concentrations solution under shear
can be fitted with the above model witha of Eq. ~7! set equal
to 1. We found typically thatL increased from the equilib-
rium value of 85.6 nm to 145 nm atg5100 s21 ~P50.73!.
The results are consistent with those expected from a dilute
solution, containing relatively collision-free rods; the shear
flow has induced both partial orientation and length growth.
Data from the 1% solution subjected to shear showed a dis-
tinctive ‘‘butterfly’’ pattern inS~Q! which is not yet under-
stood and will be the subject of future work.

The results for the 0.1% solution are of particular interest
here. Figure 2 displays the 2D patterns forS~Q! as a function
of shear. The novel result observed was that anisotropy due
to alignment was not evident until a threshold shear rate>40
s21 was reached, and then only after a time delay of 7 to 8
min after the shear was applied. Forg.40 s21 the pattern
slowly evolves to yield more anisotropy as the shear rate
increases, but no detectable time delay was observed@9#. No
substantial changes were seen forg>80 s21. Figure 3 plots
the anisotropy ratio ofS~Q! as a function ofg, showing
clearly the transition at the threshold shear rate. Data taken
from the samples at 0.02% and 1.0% at even a wider shear
rate range, however, did not display this apparent threshold
shear or delay time. Therefore, flow instability or tempera-
ture variation inside the sheared fluid and other external con-
ditions as possible causes for the threshold is ruled out.

Figure 4 shows typical cuts of the data atw50°, 55°, and
90° for applied shear rates of 40 s21 ~taken after the delay
time! and 80 s21, together with the fits according to the
modified Hayter-Penfold model. The model, with the expo-
nential length distribution and parametera, represents the
data well at all shear rates. Due to the additional parameterw
in the anisotropic scattering pattern, SANS can be sensitive
to a longer length scale than in the case of isotropic scatter-
ing. Table I lists the parametersL, l 0 , a, anda. The key
results are as follows:~1!, above the threshold shear rate,
g540 s21, L increases to and saturates at about twice its
equilibrium value, buta remains constant~the slightly larger
value of the cylinder radius obtained from the shear data is a
consequence of neglecting the polydispersity in the later fits
and is not regarded as significant!; ~2!, for shear rates above
the threshold, the factora increased to a value slightly above
2, implying a greater degree of alignment than expected from
the Hayter-Penfold theory, even allowing for an increase in
the rod lengths.

TheF50.1% solution is sufficiently dilute that no nem-
atic order can exist in the absence of shear~nematic order
has been observed in dense solutions of similar micelles
@10,11#.! For dilute solutions, however, experiments by Re-
hage, Wunderlich, and Hoffmann showed a dramatic rise in
viscosity at a critical shear rate@12#. Their results led Bruin-
smaet al. @13# to propose a kinetic theory for rodlike aggre-
gation of tubular micelles under shear. Bruinsmaet al. have
different solutions for the average rod length according to
regimes characterized by two parameters, the Pe´clet number
P and the dimensionless concentrationC5FLL

3, whereFL
is the micelle number density@alternativelyC5F(L/a)2/
2p#. ForC,1, they findL increases slightly with shear for
P>1. Data from our 0.02% solution, for which
0.08<C<0.23 withP50.78 atC50.23, are consistent with
their findings. ForC>1, characterized as a fast reaction

TABLE I. Parameters for the 0.1% concentration micellar solu-
tion.

g ~s21! a ~nm! L ~nm! l 0 ~nm! a C P

0 1.7 115 1.7 0.73 0
40 2.27 165 49 1.75 1.50 0.42
50 2.38 222 112 2.05 2.72 1.16
65 2.38 210 111 2.48 2.42 1.30
80 2.34 213 118 2.28 2.49 1.66

FIG. 3. Anisotropy ratio defined asR5[S(Q,w590°)2S(Q,w
50°)]/S(Q,w590°) for three differentQ values. It is striking to
see that the ratio is zero until some threshold shear rate'40 s21 is
reached. The ratio also appears to saturate atg>80 s21.

FIG. 4. Data from the 0.1% solution fitted using the modified
Hayter-Penfold formalism at~a!, g540 s21, just above the thresh-
old shear rate and after the delay time; and~b!, atg580 s21. Points
represent the data at anglesw as labeled. The lines are calculated.
~Deviations of the data from the fits forw50° andw555° at very
low Q are due to the poor resolution inw.!
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regime—for which many inter-rod collisions occur before a
rod has had significant time to rotate—they find the follow-
ing: for P,1, a metastable solution with a mean rod size
L'L (0), the equilibrium value; forP.1, a runaway solution
for which the mean rod length diverges. For our experiments,
atF50.1%,C50.73 at equilibrium andC.1 for the system
under shear~Table I!. If P51 corresponds to the threshold
shear, our results are consistent with this aspect of the theory,
except that we do not observe a true divergence ofL with
shear. The reason for this discrepancy may be that Bruinsma
et al. have assumed that the rods are flexible, and that rod
combination results every time two rods collide even if non-
collinear, while breakage is caused by the velocity gradient
along the rod, which is independent of the collision rate. This
mechanism inevitably will cause the length to diverge since
in the fast reaction regime the collision rate is very high. In
any case, their theory is inapplicable for a system sheared
above the threshold, because their simplifying assumption of
random rod orientations even under high shear cannot gen-
erally be valid and is contrary to our data.

Turner and Cates@14# also addressed the experimental
data of Rehageet al., but their theory assumes that the rods
are stiff and only collinear collisions will result in rod com-
bination, which appears to be a valid assumption in the case
of our system. According to their predictions, the rod length
will sharply increase but not diverge. They also predict, but
do not calculate explicitly, an anisotropy in the orientational
distribution of the rods under shear. However, these authors
do not predict a threshold for the shear rate at which the rod
length begins to increase or at which the rods begin to align,
as observed here.

We may speculate on the existence of shear threshold and
the related time delay for the micellar alignment using con-
cepts embodied in the above approaches. The dimensionless
concentrationC may also be written as the ratioJs/g, where
Js is the rate of collision due to shear~Js5gFLL

3!. If C>1,
as in the fast reaction regime and the rods are initially direc-
tionally random, it is difficult for alignment to be established
due to the rapid random collisions. If the rods are stiff, rod
combination and growth are largely inhibited. If however, a
certain degree of alignment can be established, given a suf-
ficient time or rate of shear, the probability of combination
increases because collinear collisions become more probable.
Also, after the micelles become aligned, the effect of inter-
micellar collision is just the opposite from before: collisions

prevent the rods from being randomized again. Since most of
them are aligned, a collision with the neighboring micelles
will most probably kick a micelle back to the original,
aligned direction. Thus a cooperative balance for both rod
length increase and rod orientation will occur. The ‘‘effec-
tive’’ Péclet number in the orientational distribution@Eq. ~4!#
then becomes the ratio of the rate of collisions due to shear
~thus the rate plays the role of the alignment rate instead of
g! to Dr , the rate of misalignment due to rotational diffu-
sion. ThusPeff5P(Js/g)5PC. From Eq.~7!, we see that an
alternative way to represent this ‘‘effective’’ Pe´clet number
is to use the actualP, but with an effective solvent viscosity
heff5Ch. Hence the fitting parametera used with Eq.~7!
should be equal to the dimensionless concentrationC, and
indeed they are almost identical as seen in Table I.

In summary, we have studied SANS from a system of
cylindrical micelles subjected to various degrees of shear.
For the 0.1% solution—which is just below the overlap
concentration—we apparently have two phases: a frustrated
phase when the shear rate is low and the micelles appear to
be randomly oriented, as suggested by the isotropic pattern
of the scattering, and an aligned phase at higher shears, when
the scattering pattern is anisotropic. The border between the
two phases is characterized by a ‘‘threshold’’ shear rate. The
initial phase apparently flips over to the second phase after a
time delay~7–8 min in our experiments!. We speculate that
below the threshold shear, collisions between randomly ori-
ented micelles, and therefore lack of collinear combination
reactions inhibit the micelle growth and alignment, a state
similar to the metastable state Bruinsmaet al. described.
Once the shear rate is high enough, however, an energy bar-
rier is overcome, so most of the micelles do indeed become
aligned. Once the micelles are aligned, collisions tend to
keep the alignment in place. It is this highly nonlinear effect
of the shear-induced collisions which is responsible for the
apparent phase transition. Whether this phase transition is
associated with the overlap concentration will be the subject
of future work.
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